pg_bestmatch
Module:
Categories:
Overview
PIGSTY 3rd Party Extension: pg_bestmatch
: Generate BM25 sparse vector inside PostgreSQL
Information
- Extension ID: 2140
- Extension Name:
pg_bestmatch
- Package Name:
pg_bestmatch
- Category:
FTS
- License: Apache-2.0
- Website: https://github.com/tensorchord/pg_bestmatch.rs
- Language: Rust
- Extra Tags: N/A
- Comment: N/A
Metadata
- Latest Version: 0.0.1
- Postgres Support:
17
,16
,15
,14
,13
- Need Load: Explicit Loading Required
- Need DDL: Need
CREATE EXTENSION
DDL - Relocatable: Can be installed into other schemas
- Trusted: Untrusted, Require Superuser to Create
- Schemas:
bm_catalog
- Requires: N/A
RPM / DEB
- RPM Repo: PIGSTY
- RPM Name:
pg_bestmatch_$v
- RPM Ver :
0.0.1
- RPM Deps: N/A
- DEB Repo: PIGSTY
- DEB Name:
postgresql-$v-pg-bestmatch
- DEB Ver :
0.0.1
- DEB Deps: N/A
Packages
Installation
Install pg_bestmatch
via the pig
CLI tool:
pig ext install pg_bestmatch
Install pg_bestmatch
via Pigsty playbook:
./pgsql.yml -t pg_extension -e '{"pg_extensions": ["pg_bestmatch"]}' # -l <cls>
Install pg_bestmatch
RPM from YUM repo directly:
dnf install pg_bestmatch_17;
dnf install pg_bestmatch_16;
dnf install pg_bestmatch_15;
dnf install pg_bestmatch_14;
dnf install pg_bestmatch_13;
Install pg_bestmatch
DEB from APT repo directly:
apt install postgresql-17-pg-bestmatch;
apt install postgresql-16-pg-bestmatch;
apt install postgresql-15-pg-bestmatch;
apt install postgresql-14-pg-bestmatch;
apt install postgresql-13-pg-bestmatch;
Extension pg_bestmatch
has to be added to shared_preload_libraries
shared_preload_libraries = 'pg_bestmatch'; # add to pg cluster config
Enable pg_bestmatch
extension on PostgreSQL cluster:
CREATE EXTENSION pg_bestmatch;
Usage
- repo: https://github.com/tensorchord/pg_bestmatch.rs
- benchmark: https://hazyresearch.stanford.edu/blog/2024-05-20-m2-bert-retrieval
How does it work?
- Create an BM25 statistics based on your document set by
bm25_create(table_name, column_name, statistic_name);
. It will create a materilized view to record the stats. - Generate document sparse vector by
bm25_document_to_svector(statistic_name, passage)
- For query, generate query sparse vector
bm25_query_to_svector(statistic_name, query)
- Calculate the score by dot product between the query sparse vector and the document sparse vector
- Currently we use huggingface tokenizer with
bert-base-uncased
vocabulary set to tokenize words. Might support more configuration on tokenizer in the future.
Install
CREATE EXTENSION pg_bestmatch;
SET search_path TO public, bm_catalog;
Example
Here is an example workflow demonstrating the usage of this extension with the example of Stanford LoCo benchmark.
- Load the dataset. Here is a script for you if you want to experience
pg_bestmatch
with the dataset.
wget https://huggingface.co/api/datasets/hazyresearch/LoCoV1-Documents/parquet/default/test/0.parquet -O documents.parquet
wget https://huggingface.co/api/datasets/hazyresearch/LoCoV1-Queries/parquet/default/test/0.parquet -O queries.parquet
import pandas as pd
from sqlalchemy import create_engine
import numpy as np
from psycopg2.extensions import register_adapter, AsIs
def adapter_numpy_float64(numpy_float64):
return AsIs(numpy_float64)
def adapter_numpy_int64(numpy_int64):
return AsIs(numpy_int64)
def adapter_numpy_float32(numpy_float32):
return AsIs(numpy_float32)
def adapter_numpy_int32(numpy_int32):
return AsIs(numpy_int32)
def adapter_numpy_array(numpy_array):
return AsIs(tuple(numpy_array))
register_adapter(np.float64, adapter_numpy_float64)
register_adapter(np.int64, adapter_numpy_int64)
register_adapter(np.float32, adapter_numpy_float32)
register_adapter(np.int32, adapter_numpy_int32)
register_adapter(np.ndarray, adapter_numpy_array)
db_url = "postgresql://localhost:5432/pg_bestmatch_test"
engine = create_engine(db_url)
def load_documents():
df = pd.read_parquet("documents.parquet")
df.to_sql("documents", engine, if_exists='replace', index=False)
def load_queries():
df = pd.read_parquet("queries.parquet")
df['answer_pids'] = df['answer_pids'].apply(lambda x: str(x[0]))
df.to_sql("queries", engine, if_exists='replace', index=False)
load_documents()
load_queries()
- Create BM25 statistics for the
documents
table.
SELECT bm25_create('documents', 'passage', 'documents_passage_bm25', 0.75, 1.2);
- Add an embedding column to the
documents
andqueries
tables and update the embeddings for documents and queries.
ALTER TABLE documents ADD COLUMN embedding svector; -- for pgvecto.rs users
ALTER TABLE documents ADD COLUMN embedding sparsevec; -- for pgvector users
UPDATE documents SET embedding = bm25_document_to_svector('documents_passage_bm25', passage)::svector; -- for pgvecto.rs users
UPDATE documents SET embedding = bm25_document_to_svector('documents_passage_bm25', passage, 'pgvector')::sparsevec; -- for pgvector users
- (Optional) Create a vector index on the sparse vector column.
CREATE INDEX ON documents USING vectors (embedding svector_dot_ops); -- for pgvecto.rs users
CREATE INDEX ON documents USING ivfflat (embedding sparsevec_ip_ops); -- for pgvector users
- Perform a vector search to find the most relevant documents for each query.
ALTER TABLE queries ADD COLUMN embedding svector; -- for pgvecto.rs users
ALTER TABLE queries ADD COLUMN embedding sparsevec; -- for pgvector users
UPDATE queries SET embedding = bm25_query_to_svector('documents_passage_bm25', query)::svector; -- for pgvecto.rs users
UPDATE queries SET embedding = bm25_query_to_svector('documents_passage_bm25', query, 'pgvector')::sparsevec; -- for pgvector users
SELECT sum((array[answer_pids] = array(SELECT pid FROM documents WHERE queries.dataset = documents.dataset ORDER BY queries.embedding <#> documents.embedding LIMIT 1))::int) FROM queries;
This workflow showcases how to leverage BM25 text queries and vector search in PostgreSQL using this extension. The Top 1 recall of BM25 on this dataset is 0.77
. If you reproduce the result, your operations are correct.
Comparison with pg_search
pg_bestmatch.rs
only provides methods for generating sparse vectors and does not support index-based search (which can be achieved by pgvecto.rs or pgvector).pg_search
performs BM25 retrieval via the externaltantivy
engine, which may have limitations when combined with transactions, filters, or JOIN operations. Sincepg_bestmatch.rs
is entirely native to Postgres, it offers full compatibility with these operations inside postgres.
Reference
tokenize
- Description: Tokenizes an input string into individual tokens.
- Example:
SELECT tokenize('i have an apple'); -- result: {i,have,an,apple}
bm25_create
- Description: Creates BM25 statistics for a specified table and column.
- Usage:
SELECT bm25_create('documents', 'passage', 'documents_passage_bm25');
- Parameters:
table_name
: Name of the table.column_name
: Name of the column.stat_name
: Name of the BM25 statistics.b
: BM25 parameter (default 0.75).k
: BM25 parameter (default 1.2).
bm25_refresh
- Description: Updates the BM25 statistics to reflect any changes in the underlying data.
- Usage:
SELECT bm25_refresh('documents_passage_bm25');
- Parameters:
stat_name
: Name of the BM25 statistics to update.
bm25_drop
- Description: Deletes the BM25 statistics for a specified table and column.
- Usage:
SELECT bm25_drop('documents_passage_bm25');
- Parameters:
stat_name
: Name of the BM25 statistics to delete.
bm25_document_to_svector
- Description: Converts document text into a sparse vector representation.
- Usage:
SELECT bm25_document_to_svector('documents_passage_bm25', 'document_text');
- Parameters:
stat_name
: Name of the BM25 statistics.document_text
: The text of the document.style
: Emitspgvecto.rs
-style sparse vector orpgvector
-style sparse vector.
bm25_query_to_svector
- Description: Converts query text into a sparse vector representation.
- Usage:
SELECT bm25_query_to_svector('documents_passage_bm25', 'We begin, as always, with the text.');
- Parameters:
stat_name
: Name of the BM25 statistics.query_text
: The text of the query.style
: Emitspgvecto.rs
-style sparse vector orpgvector
-style sparse vector.
Feedback
Was this page helpful?
Glad to hear it! Please tell us how we can improve.
Sorry to hear that. Please tell us how we can improve.